资源类型

期刊论文 225

会议视频 2

年份

2023 33

2022 28

2021 31

2020 17

2019 14

2018 11

2017 12

2016 6

2015 10

2014 5

2013 6

2012 6

2011 5

2010 8

2009 6

2008 6

2007 8

2005 2

2004 1

2003 2

展开 ︾

关键词

氢能 5

燃料电池 5

制氢 4

可再生能源 3

力常数 2

新能源 2

无氢渗碳 2

氢燃料电池 2

硫化氢 2

键能 2

键长 2

&alpha 1

2035 1

N3C空位 1

n-Si 1

产业规模化 1

产业链 1

产氢活性 1

产氧反应 1

展开 ︾

检索范围:

排序: 展示方式:

Defect passivation on cast-mono crystalline screen-printed cells

Alison WENHAM,Lihui SONG,Malcolm ABBOTT,Iskra ZAFIROVSKA,Sisi WANG,Brett HALLAM,Catherine CHAN,Allen BARNETT,Stuart WENHAM

《能源前沿(英文)》 2017年 第11卷 第1期   页码 60-66 doi: 10.1007/s11708-016-0443-5

摘要: Cast-mono crystalline silicon wafers contain crystallographic defects, which can severely impact the electrical performance of solar cells. This paper demonstrates that applying hydrogenation processes at moderate temperatures to finished screen print cells can passivate dislocation clusters within the cast-mono crystalline silicon wafers far better than the hydrogenation received during standard commercial firing conditions. Efficiency enhancements of up to 2% absolute are demonstrated on wafers with high dislocation densities. The impact of illumination to manipulate the charge state of hydrogen during annealing is investigated and found to not be significant on the wafers used in this study. This finding is contrary to a previous study on similar wafers that concluded increased H or H from laser illumination was responsible for the further passivation of positively charged dangling bonds within the dislocation clusters.

关键词: silicon solar cell     dislocation     cast-mono     laser     hydrogen passivation    

EFFECT OF EXOGENOUS ADDITIVES ON HEAVY METAL PASSIVATION AND NITROGEN RETENTION IN PIG MANURE COMPOSTING

《农业科学与工程前沿(英文)》 doi: 10.15302/J-FASE-2023487

摘要:

● Research on heavy metal passivation and nitrogen emissions is necessary for the pig industry.

关键词: additives     composting     heavy metals passivation     nitrogen retention     pig manure    

Impact of thermal processes on multi-crystalline silicon

Moonyong KIM,Phillip HAMER,Hongzhao LI,David PAYNE,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

《能源前沿(英文)》 2017年 第11卷 第1期   页码 32-41 doi: 10.1007/s11708-016-0427-5

摘要: Fabrication of modern multi-crystalline silicon solar cells involves multiple processes that are thermally intensive. These include emitter diffusion, thermal oxidation and firing of the metal contacts. This paper illustrates the variation and potential effects upon recombination in the wafers due to these thermal processes. The use of light emitter diffusions more compatible with selective emitter designs had a more detrimental effect on the bulk lifetime of the silicon than that of heavier diffusions compatible with a homogenous emitter design and screen-printed contacts. This was primarily due to a reduced effectiveness of gettering for the light emitter. This reduction in lifetime could be mitigated through the use of a dedicated gettering process applied before emitter diffusion. Thermal oxidations could greatly improve surface passivation in the intra-grain regions, with the higher temperatures yielding the highest quality surface passivation. However, the higher temperatures also led to an increase in bulk recombination either due to a reduced effectiveness of gettering, or due to the presence of a thicker oxide layer, which may interrupt hydrogen passivation. The effects of fast firing were separated into thermal effects and hydrogenation effects. While hydrogen can passivate defects hence improving the performance, thermal effects during fast firing can dissolve precipitating impurities such as iron or de-getter impurities hence lower the performance, leading to a poisoning of the intra-grain regions.

关键词: gettering     grain boundaries     hydrogen     impurities     oxidation     passivation     solar cell    

SiO2 passivation layer grown by liquid phase deposition for silicon solar cell application

Yanlin CHEN,Sihua ZHONG,Miao TAN,Wenzhong SHEN

《能源前沿(英文)》 2017年 第11卷 第1期   页码 52-59 doi: 10.1007/s11708-016-0429-3

摘要: Surface passivation is one of the primary requirements for high efficient silicon solar cells. Though the current existed passivation techniques are effective, expensive equipments are required. In this paper, a comprehensive understanding of the SiO passivation layer grown by liquid phase deposition (LPD) was presented, which was cost-effective and very simple. It was found that the post-annealing process could significantly enhance the passivation effect of the LPD SiO film. Besides, it was revealed that both chemical passivation and field-effect passivation mechanisms played important roles in outstanding passivation effect of the LPD SiO film through analyzing the minority carrier lifetime and the surface recombination velocity of n-type and p-type silicon wafers. Although the deposition parameters had little influence on the passivation effect, they affected the deposition rate. Therefore, appropriate deposition parameters should be carefully chosen based on the compromise of the deposition rate and fabrication cost. By utilizing the LPD SiO film as surface passivation layer, a 19.5%-efficient silicon solar cell on a large-scale wafer (156 mm × 156 mm) was fabricated.

关键词: Si solar cell     passivation     SiO2     liquid phase deposition     carrier lifetime    

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 85-91 doi: 10.1007/s11708-016-0437-3

摘要: The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage ( ) of up to 0.732 V.

关键词: PECVD     high pressure and high power     a-Si:H microstructure     passivation     heterojunction solar cell    

High frequency group pulse electrochemical machining

WU Gaoyang, ZHANG Zhijing, ZHANG Weimin, TANG Xinglun

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 293-296 doi: 10.1007/s11465-007-0051-5

摘要: In the process of machining ultrathin metal structure parts, the signal composition of high frequency group pulse, the influence of frequency to reverse current, and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed. The experiments on process were carried out. Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field, reduce electrode passivation, and obtain high machining quality. The machining quality is obviously improved by increasing the main pulse frequency. The dimensional accuracy reaches 30 40 ?m and the roughness attained is at 0.30 0.35 ?m. High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

关键词: HGPECM     process     machining quality     passivation     inter-electrode    

软磁复合材料硝酸钠钝化绝缘包覆新技术 Article

严密, 陈起明, 刘冬, 吴琛, 王健

《工程(英文)》 2023年 第20卷 第1期   页码 134-142 doi: 10.1016/j.eng.2022.01.016

摘要:

本研究发明了制备FeSiAl软磁复合材料(SMC)的硝酸钠钝化绝缘包覆新技术。结合成分组成和微观结构分析,研究了不同pH条件下包覆层的生成规律,发现酸性NaNO3溶液钝化形成的绝缘包覆层由Fe2O3、SiO2、Al2O3和AlO(OH)组成。随着pH值升高,由于NO3的氧化能力减弱,Fe2O3转化为Fe3O4,而碱性NaNO3溶液钝化形成Al2O3、AlO(OH)和SiO2。进一步地,从热力学和动力学角度揭示了包覆层生长机理及其与FeSiAl SMC软磁性能的内在关联。通过调整钝化条件,可实现在50 kHz和100 mT测试条件下,有效磁导率为97.2、损耗为296.4 mW·cm−3的最优性能。

关键词: 软磁复合材料     表面钝化     绝缘包覆技术     生长机理     磁性能    

A systemic review of hydrogen supply chain in energy transition

《能源前沿(英文)》 2023年 第17卷 第1期   页码 102-122 doi: 10.1007/s11708-023-0861-0

摘要: Targeting the net-zero emission (NZE) by 2050, the hydrogen industry is drastically developing in recent years. However, the technologies of hydrogen upstream production, midstream transportation and storage, and downstream utilization are facing obstacles. In this paper, the development of hydrogen industry from the production, transportation and storage, and sustainable economic development perspectives were reviewed. The current challenges and future outlooks were summarized consequently. In the upstream, blue hydrogen is dominating the current hydrogen supply, and an implementation of carbon capture and sequestration (CCS) can raise its cost by 30%. To achieve an economic feasibility, green hydrogen needs to reduce its cost by 75% to approximately 2 /kg at the large scale. The research progress in the midterm sector is still in a preliminary stage, where experimental and theoretical investigations need to be conducted in addressing the impact of embrittlement, contamination, and flammability so that they could provide a solid support for material selection and large-scale feasibility studies. In the downstream utilization, blue hydrogen will be used in producing value-added chemicals in the short-term. Over the long-term, green hydrogen will dominate the market owing to its high energy intensity and zero carbon intensity which provides a promising option for energy storage. Technologies in the hydrogen industry require a comprehensive understanding of their economic and environmental benefits over the whole life cycle in supporting operators and policymakers.

关键词: hydrogen production     hydrogen transportation and storage     hydrogen economy     carbon capture and sequestration (CCS)     technology assessment    

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 34-63 doi: 10.1007/s11705-021-2050-1

摘要: H2S is well-known as a colorless, acidic gas, with a notoriously rotten-egg smell. It was recently revealed that H2S is also an endogenous signaling molecule that has important biological functions, however, most of its physiology and pathology remains elusive. Therefore, the enthusiasm for H2S research remains. Fluorescence imaging technology is an important tool for H2S biology research. The development of fluorescence imaging technology has realized the study of H2S in subcellular organelles, facilitated by the development of fluorescent probes. The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups: H2S reducibility-based probes, H2S nucleophilicity-based probes, and metal sulfide precipitation-based probes. The structure of the probes, their sensing mechanism, and imaging results have been discussed in detail. Moreover, we also introduced some probes for hydrogen polysulfides.

关键词: hydrogen sulfide     fluorescent probe     reducibility     nucleophilicity     copper sulfide precipitate     hydrogen polysulfides    

Production of hydrogen from fossil fuel: A review

《能源前沿(英文)》 2023年 第17卷 第5期   页码 585-610 doi: 10.1007/s11708-023-0886-4

摘要: Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several non-noble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al2O3 catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.

关键词: methane     catalytic conversion     natural gas     hydrogen production     CCUS    

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

《能源前沿(英文)》 2021年 第15卷 第1期   页码 667-677 doi: 10.1007/s11708-021-0767-7

摘要: Owing to the outstanding characteristics of tailorable electronic and optical properties, semiconducting polymers have attracted considerable attention in recent years. Among them, organic polymer dots process large breadth of potential synthetic diversity are the representative of photocatalysts for hydrogen production, which presents both an opportunity and a challenge. In this mini-review, first, the organic polymer photocatalysts were introduced. Then, recent reports on polymer dots which showed a superior photocatalytic activity and a robust stability under visible-light irradiation, for hydrogen production were summarized. Finally, challenges and outlook on using organic polymer dots-based photocatalysts from hydrogen production were discussed.

关键词: polymer dots (Pdots)     photocatalysis     hydrogen production    

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 464-482 doi: 10.1007/s11705-020-1983-0

摘要: The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H /CH selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.

关键词: power to hydrogen     membrane technology     hydrogen     energy    

我国氢能产业发展战略研究

凌文,李全生,张凯

《中国工程科学》 2022年 第24卷 第3期   页码 80-88 doi: 10.15302/J-SSCAE-2022.03.009

摘要:

本文从“双碳”目标背景和氢能在我国构建清洁低碳、安全高效现代能源体系中的作用出发,系统梳理了全球氢能产业的进展情况,从氢能产业规模、产业特点、产业政策等方面分析了我国氢能源产业的发展现状、发展需求和面临的主要问题。当前,我国氢能产业战略布局不断强化,氢能基础设施领域投资逐步开展,区域产业集聚效应初步显现,但存在标准体系不健全、产业同质化苗头显现、产业链尚未打通且应用场景单一等挑战。研究建议:进一步加强氢能产业发展顶层设计,系统构建制氢、储氢及用氢技术标准体系,加大氢能全产业链的试点示范与推广,提升氢能科技创新,实现高水平自立自强,进而推动我国氢能产业高质量发展。

关键词: 氢能全产业链;碳中和;碳达峰;制氢;供氢;用氢    

Therapeutic application of hydrogen sulfide donors: the potential and challenges

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 18-27 doi: 10.1007/s11684-015-0427-6

摘要:

Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of anti-inflammatory drugs.

关键词: hydrogen sulfide     cardiovascular     cancer     hypertension    

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

《能源前沿(英文)》 doi: 10.1007/s11708-023-0870-z

摘要: Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

关键词: threshold solar water     splitting hydrogen III    

标题 作者 时间 类型 操作

Defect passivation on cast-mono crystalline screen-printed cells

Alison WENHAM,Lihui SONG,Malcolm ABBOTT,Iskra ZAFIROVSKA,Sisi WANG,Brett HALLAM,Catherine CHAN,Allen BARNETT,Stuart WENHAM

期刊论文

EFFECT OF EXOGENOUS ADDITIVES ON HEAVY METAL PASSIVATION AND NITROGEN RETENTION IN PIG MANURE COMPOSTING

期刊论文

Impact of thermal processes on multi-crystalline silicon

Moonyong KIM,Phillip HAMER,Hongzhao LI,David PAYNE,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

期刊论文

SiO2 passivation layer grown by liquid phase deposition for silicon solar cell application

Yanlin CHEN,Sihua ZHONG,Miao TAN,Wenzhong SHEN

期刊论文

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

期刊论文

High frequency group pulse electrochemical machining

WU Gaoyang, ZHANG Zhijing, ZHANG Weimin, TANG Xinglun

期刊论文

软磁复合材料硝酸钠钝化绝缘包覆新技术

严密, 陈起明, 刘冬, 吴琛, 王健

期刊论文

A systemic review of hydrogen supply chain in energy transition

期刊论文

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

期刊论文

Production of hydrogen from fossil fuel: A review

期刊论文

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

期刊论文

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

期刊论文

我国氢能产业发展战略研究

凌文,李全生,张凯

期刊论文

Therapeutic application of hydrogen sulfide donors: the potential and challenges

null

期刊论文

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

期刊论文